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The problem of determining the accumulated energy function, the strain energy and the energy concentration coefficient 
corresponding to singularities in the form of concentrated forces and moments in an infinite homogeneous linearly elastic 
anisotropic medium is considered. The method of multipole expansions is used. Examples are presented. (B 1997 Elsevier science 
Ltd. AU rights reserved. 

1. FORMULATION OF THE PROBLEM 
For a hyperelastic homogeneous anisotropic medium, the accumulated energy function can be deter- 
mined as a bilinear form in a space of second rank symmetric tensors which correspond to linear 
deformations of the medium [l] 

f(x)=j$&(x)-.C..E(X), XE R3 (1-l) 

where E is the strain tensor field and C is a tetravalent elasticity tensor which characterizes the elastic 
properties of the medium. It is assumed that the tensor C is strictly elliptic such that f > 0 when 
E(X) + 0. The accumulated energy funr.!tion is of interest when analysing the redistribution of strain 
energy in different directions during the loading of an anisotropic medium. 

A double zero-moment force, a double force with a moment and a dilation centre [l] located at the 
origin of coordinates of an infinite medium are considered as the external effects. It is essential that, 
in the case of these types of effects, the accumulated energy function turns out to be positively homo- 
geneous with respect to the coordinates and only has a singularity at the origin of the coordinate 
system. 

When the accumulated energy function is known, it is also possible to calculate the strain 
energy 

where Bs is a sphere of radius 6 with centre at the origin of the coordinate system, and dr is the Lebesgue 
measure in R . The need to exclude the neighbourhood of the coordinate origin in (1.2), where the 
concentrated force effects are applied, is due, as is shown below, to the existence of a non-integrable 
singularity of the ftmctionf. The separating out of neighbourhoods containing non-integrable singularities 
when determining the strain energy has also been encountered previously in problems in dislocation 
theory, for example. 

Together with the energy which is calculated using formula (1.2), we are also interested in the 
magnitude of the energy concentration coefficient, defined by the formula 

where 01 is the asymptotic exponent in formula (1.2) when 6 + 0. 
The multipole expansion method [2] is used to obtain an analytic expression for the functionf, which 

corresponds to the types of effects under consideration. This enables us to represent fin the form of 
an absolutely convergent series in spherical harmonics. The same method is used to calculate the strain 
energy. 
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2. BASIC RELATIONS 

The Lam6 equilibrium equations for an anisotropic medium can be represented in the form 

A@, N(x) = - div, c . -V,u(x) = 0 (2-l) 

where A is the matrix differential operator of the equilibrium equations and u is the vector field of the 
displacements in the medium. Application of the Fourier integral transform 

g^(S) = $ gWexp(-2nixW.x 

to (2.1) enables us to obtain the symbol of the equilibrium equation operator and, using this, the symbol 
of the fundamental solution of the equilibrium equations can be written in the form 

E^(@ = A;(&/ detA*(S), A*(s) = (2x)*5.C.& (2.2) 

where Ai is the matrix of the cofactors of the symbol A^. Formula (2.2) shows that the symbol E* is 
positively homogeneous with respect to 15 1 and of degree -2. 

In the case of general anisotropy, the fundamental solution of Eqs (2.1), associated with the inverse 
Fourier transformation of expression (2.2), can only be obtained numerically. 

3. SINGULAR EFFECTS 

The following types of individual concentrated force effects in an infinite medium and the (Fourier- 
transformed) displacement and deformation fields caused by them are considered. 

(a) A double zero-moment force 

u”(Q = 2xi(n$)EA(&n, r(e)= -(2x)*(n.5)50En(5).n (3.1) 

where II is the unit vector directed along the line of action of the double force. 
(b) A double force with a moment. The corresponding expressions differ from (3.1) in the replacement 

of (II .g) by (nl. 5) where n, is the direction of the “arm” of the pair and n is the direction of one of 
the forces. 

(c) An extension-compression centre 

d(e) = 27ciE’(5).5, r^ (4) = -(2x)’ 5 @ E^(&S (3.2) 

4. THE MULTIPOLE EXPANSION METHOD 

An analysis of expressions (3.1) and (3.2) for the strain tensor shows that, in each of the cases 
considered, the deformations E* turn out to be positively homogeneous of degree 0 with respect to 15 1 
and real-analytic with respect to 5 everywhere in R3\0. By analogy with [2], we shall expand them in 
series in surface spherical harmonics 

*?I+1 QA (5) = 
n=0.2,4.... p=l 

where l V are the coefficients of the multipole series, determined by integration of the tensor l A over 
a unit sphere S in R3 and YP, are spherical harmonics of degree n and indexp. The summation in (4.1) 
is carried out over the spherical harmonics of even order n in view of the evenness of E- on a unit sphere. 
It is essential that the series on the right-hand side of (4.1) converge absolutely on S. 

The inverse Fourier transformation which is applied to the right-hand side of (4.1) enables one to 
obtain the required strain tensors in the space of the originals also in the form of multipolar series 

x’=$ y, =i+qy)/r(;) 

where y,, are multipliers for the transition from the space of the images to the initial space [2]. The 
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zeroth order harmonic is excluded from the summation in (4.2) as it would lead to a b-like component 
in the expression for the strain tensor. 

5. THE STRAIN ENERGY 

Substitution of expansion (4.2) into the expression for the accumulated energy function (1.1) 
gives 

f(x) = ~ixl" 
2n+l2m+l 

x c y,ym c c EW 4I-r”4Y~(X’)Y,4(X’) (5.1) 
n=2,4.... m=2,4 . . . . p=l y=l 

Formula (5.1) shows that the function f has a singularity at the origin of coordinates of the form 
O(1 x IA) such that energy integral turns out to be divergent. 

The separating out of the spherical neighbourhood of the origin of coordinates in (1.2) enables one 
to obtain finite values for the energy integral. When account is taken of the orthonormality of the surface 
spherical harmonics from (5.1) on the surface of the unit sphere S, this gives 

The series on the right-hand side of (5.2 is absolutely convergent in view of the real analyticity of 
the components of the s train tensor in R 4 0. The energy concentration coefficient is determined in 
a similar manner using (1.3) and (5.2). If Parseval’s equality is made use of in (1.1) and (1.3) we obtain 
(S is a sphere of unit radius in R3) 

(5.3) 

An analysis of expressions (3.1) and (3.2) for the strain tensor and formulae (l.l)-(1.3) shows that 
the accumulated energy function, the strain energy and the energy concentration coefficient turn out 
to be forms of the fourth power of the vector II in the case of the zero-moment double force, and of 
the second power of the vectors n and nL in the case of a double force with a moment. Representations 
of the energy concentration coefficient for a zero-moment double force (a) and a double force with a 
moment (b) are given below 

(a> w, =n@n-~Wo.-n@n, (b)Wo=nl@n...Wo...n@nl (5.4) 

In formula (5.4) W. is a symmetric fourth-rank tensor which depends solely on the elastic properties 
of the anisotropic medium and is written by virtue of expressions (3.1), (3.2) and (5.3) as 

where, moreover, account has been taken of the fact that A* (6) . EA (5) = I. By using the index form 
for the components of the stress tensor, it is possible to give the following form to the formula for W. 
which is convenient when performing calculations 

#j&l 
0 

=$x2~% (',fP(& ' sm tldedcp 

5, =sin&incp, c2 =sinBcoscp, & =c0se 

6. ORIENTATION OF DEFECTS IN ANISOTROPIC CRYSTALS 

We will now consider the problem of determining the orientation of an isolated defect in the form 
of a zero-moment double force corresponding to the minimum of the energy concentration coefficient. 
Defects of this type simulate point edge dislocations; dislocation loops can later arise when such point 
dislocations combine. 



656 R. V Gol’dshtein and S. V Kuznetsov 

Expression (1.3) shows that the magnitude of the energy concentration coefficient is characterized 
in a certain manner by the strain energy associated with the formation of such a defect in a crystal. By 
virtue of (5.4), to determine the minimum of W, it is sufficient to calculate the tensor Wc, which is 
invariant under the different orientations of the defect and then, by convoluting (5.4) with the vectors 
II, determine the direction of II for which a minimum of W, is attained. 

In Figs 1 and 2, graphs of the change in the energy concentration coefficients have been drawn for 
two crystals: a transversely isotropic zinc crystal and a cubic spine1 qstal (MgA120.,), respectively. The 
dimensionless values of the concentration coefficient: Wdll C 112, where 11 C 112 is the Euclidean norm of 
the elasticity tensor, are plotted on the ordinate. These graphs indicate the existence of certain directions 
in the crystals under consideration for which W, attains a minimum value. In the case of the transversely 

Fig. 1. 

Fig. 2. 
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isotropic zinc crystal, the directions 8 = IL/~, which correspond to the arrangement of the defect in the 
form of a zero-moment double force in the plane of isotropy, turn out to be these directions. In the 
case of the spine1 crystal, the minimum directions when 8 = ld4, 364, cp = 7c/4, 37c/4, 544, 77r/4 are 
found to be equally inclined with respect to the vectors of the initial orthogonal basis and coincident 
with the principal axes of elasticity of the crystal. 

To all appearances, the minimum directions correspond to the most probable orientations of defects 
in the form of a zero-moment double force in the crystals being considered. Analogous results can also 
be obtained in the case of defects in the form of a double force with a moment. 

This research was supported financially by the International Science Foundation (M7YOOO). 

REFERENCES 
1. GURTIN, M. E., The linear theory of elasticity. Handbuch der Physik. Springer, Berlin, 1973, I&/2,1-295. 
2. KUZNETSOV, S. V, Fundamental solutions of the Lam6 equations for anisotropic media. Izy. AW. Nauk SSSR, MTT, 1989, 

4, a-54. 

Tmnslated by E.L.S. 


